#include #include #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/task.h" #include "freertos/queue.h" #include "esp_log.h" #include "esp_heap_caps.h" #include "driver/gpio.h" #include "driver/spi_common.h" #include "driver/spi_master.h" #include "driver/spi_common_internal.h" #include "esp32-lora.h" #define READ_REG 0x7F #define WRITE_REG 0x80 #define PA_OUTPUT_RFO_PIN 0 #define PA_OUTPUT_PA_BOOST_PIN 1 const long long frequencies[] = { 433e+6, 866e+6, 915e+6 }; const long bandwidths[] = { 7.8e3, 10.4e3, 15.6e3, 20.8e3, 31.25e3, 41.7e3, 62.5e3, 125e3, 250e3, 500e3 }; const char *TAG = "LoRa32"; static QueueHandle_t dio_event_queue; static TaskHandle_t dio_task_handle; static SemaphoreHandle_t spi_semaphore; uint8_t lora32_read_reg(lora32_cfg_t *lora, uint8_t address) { xSemaphoreTake(spi_semaphore, portMAX_DELAY); spi_transaction_t t; memset(&t, 0, sizeof(spi_transaction_t)); t.length = 16; t.flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA; t.tx_data[0] = address & READ_REG; t.tx_data[1] = 0x00; ESP_ERROR_CHECK(spi_device_transmit(lora->spi, &t)); ESP_LOGV(TAG, "<%2X<%2X", address, t.rx_data[1]); xSemaphoreGive(spi_semaphore); return t.rx_data[1]; } void lora32_write_reg(lora32_cfg_t *lora, uint8_t address, uint8_t value) { xSemaphoreTake(spi_semaphore, portMAX_DELAY); spi_device_handle_t spi = lora->spi; spi_transaction_t t; memset(&t, 0, sizeof(spi_transaction_t)); ESP_LOGV(TAG, ">%2X>%2X", address, value); t.length = 16; t.flags = SPI_TRANS_USE_TXDATA; t.tx_data[0] = address | WRITE_REG; t.tx_data[1] = value; ESP_ERROR_CHECK(spi_device_transmit(spi, &t)); xSemaphoreGive(spi_semaphore); }; double lora32_calc_datarate(lora32_cfg_t *lora) { double cr = (4.0 / (long)lora->codingRate); double sf = pow(2, lora->spreadingFactor); double c2 = sf / bandwidths[lora->bandwidth]; ESP_LOGI(TAG, "codingRate: %d cr: %f sf: %f c2: %f", lora->codingRate, cr, sf, c2); return lora->spreadingFactor * cr / c2 * 1000; } void lora23_set_explicit_header(lora32_cfg_t *lora) { ESP_LOGD(TAG, "setting explicit header"); lora->implicitHeader = false; lora32_write_reg(lora, REG_MODEM_CONFIG_1, lora32_read_reg(lora, REG_MODEM_CONFIG_1) & 0xFE); } void lora23_set_implicit_header(lora32_cfg_t *lora) { ESP_LOGD(TAG, "setting implicit header"); lora->implicitHeader = true; lora32_write_reg(lora, REG_MODEM_CONFIG_1, lora32_read_reg(lora, REG_MODEM_CONFIG_1) | 0x01); } void lora32_standby(lora32_cfg_t *lora) { ESP_LOGV(TAG, "MODE_STANDBY"); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_STANDBY); } void lora32_sleep(lora32_cfg_t *lora) { ESP_LOGV(TAG, "MODE_SLEEP"); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_SLEEP); } void lora32_enable_fhss(lora32_cfg_t *lora, uint8_t period) { lora->enableFHSS = true; lora32_write_reg(lora, REG_HOP_PERIOD, period); } void lora32_disable_fhss(lora32_cfg_t *lora) { lora->enableFHSS = false; lora32_write_reg(lora, REG_HOP_PERIOD, 0); } void lora32_enable_tx(lora32_cfg_t *lora) { lora32_standby(lora); if(lora->implicitHeader) lora23_set_implicit_header(lora); else lora23_set_explicit_header(lora); // zero out receive buffer lora32_write_reg(lora, REG_FIFO_ADDR_PTR, 0); lora32_write_reg(lora, REG_PAYLOAD_LENGTH, 0); } void lora32_send(lora32_cfg_t *lora, uint8_t *data, uint8_t len) { ESP_ERROR_CHECK(spi_device_acquire_bus(lora->spi, portMAX_DELAY)); lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_TXDONE); lora32_enable_tx(lora); uint8_t i = 0; for(; (i < len && i < MAX_PKT_LENGTH); i++) lora32_write_reg(lora, REG_FIFO, data[i]); lora32_write_reg(lora, REG_PAYLOAD_LENGTH, len); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_TX); spi_device_release_bus(lora->spi); } void lora32_set_frequency(lora32_cfg_t *lora, long frequency) { ESP_LOGI(TAG, "lora32_set_frequency: %lu", frequency); uint64_t frf = ((uint64_t)frequency << 19) / 32000000; ESP_LOGI(TAG, "REG_FRF_MSB: 0x%2X", (uint8_t)(frf >> 16)); ESP_LOGI(TAG, "REG_FRF_MID: 0x%2X", (uint8_t)(frf >> 8)); ESP_LOGI(TAG, "REG_FRF_LSB: 0x%2X", (uint8_t)(frf >> 0)); lora32_write_reg(lora, REG_FRF_MSB, (uint8_t)(frf >> 16)); lora32_write_reg(lora, REG_FRF_MID, (uint8_t)(frf >> 8)); lora32_write_reg(lora, REG_FRF_LSB, (uint8_t)(frf >> 0)); ESP_LOGD(TAG, "REG_FRF_MSB: 0x%2X", lora32_read_reg(lora, REG_FRF_MSB)); ESP_LOGD(TAG, "REG_FRF_MID: 0x%2X", lora32_read_reg(lora, REG_FRF_MID)); ESP_LOGD(TAG, "REG_FRF_LSB: 0x%2X", lora32_read_reg(lora, REG_FRF_LSB)); } void lora32_set_ocp(lora32_cfg_t *lora, uint8_t ma) { } void lora32_set_tx_power(lora32_cfg_t *lora, uint8_t level, uint8_t output) { if(output == PA_OUTPUT_RFO_PIN) { if(level > 14) level = 14; lora32_write_reg(lora, REG_PA_CONFIG, 0x70 | level); } else { if(level > 17) { // cap power level to 20 if(level > 20) level = 20; level -= 3; lora32_write_reg(lora, REG_PA_DAC, 0x07); // TODO: set over current protection } else { if(level < 2) level = 2; lora32_write_reg(lora, REG_PA_DAC, 0x04); // TODO: set over current protection } lora32_write_reg(lora, REG_PA_CONFIG, PA_BOOST | (level - 2)); } ESP_LOGI(TAG, "set_tx_power(%d, %d)", level, output); ESP_LOGD(TAG, "REG_PA_CONFIG: 0x%2X", lora32_read_reg(lora, REG_PA_CONFIG)); } uint8_t lora32_data_available(lora32_cfg_t *lora) { return lora32_read_reg(lora, REG_RX_NB_BYTES) - lora->fifoIdx; } void lora32_dump_regs(lora32_cfg_t *lora) { uint8_t i; char endline[17] = {0}; printf(" "); for(i = 0; i < 16; i++) printf(" %X%s", i, (i % 2 == 1 ? " " : "")); printf("\n"); for(i = 0; i < 127; i++) { if(i % 16 == 0) printf("0x%02X: ", i); char c = lora32_read_reg(lora, i); endline[i % 16] = (c >= 32 ? c : '.'); printf("%02X%s", c, i % 2 == 1 ? " " : ""); if(i % 16 == 15) printf(" %s\n", endline); } printf("\n"); } void lora32_toggle_reset(lora32_cfg_t *config) { // toggle reset (L/H) ESP_LOGI(TAG, "Toggling reset pin %d", config->reset); gpio_set_level(config->reset, 0); vTaskDelay(100 / portTICK_PERIOD_MS); // requires 100us gpio_set_level(config->reset, 1); vTaskDelay(100 / portTICK_PERIOD_MS); // 5ms before available } uint8_t lora32_get_spreadingfactor(lora32_cfg_t *lora) { return (lora32_read_reg(lora, REG_MODEM_CONFIG_2) >> 4); } void lora32_set_spreadfactor(lora32_cfg_t *lora, uint8_t factor) { if(factor <= 6) { factor = 6; lora32_write_reg(lora, REG_DETECTION_OPTIMIZE, DETECT_OPT_SF6); lora32_write_reg(lora, REG_DETECTION_THRESHOLD, DETECT_THRES_SF6); } else { if(factor > 12) factor = 12; lora32_write_reg(lora, REG_DETECTION_OPTIMIZE, DETECT_OPT_OTHER); lora32_write_reg(lora, REG_DETECTION_THRESHOLD, DETECT_THRES_OTHER); } ESP_LOGI(TAG, "lora32_set_spreadfactor: %d", factor); lora32_write_reg(lora, REG_MODEM_CONFIG_2, (lora32_read_reg(lora, REG_MODEM_CONFIG_2) & 0x0F) | ((factor << 4) & 0xF0)); } void lora32_enable_single_rx(lora32_cfg_t *lora) { ESP_LOGD(TAG, "MODE_RX_SINGLE"); if(lora->receive != NULL) { lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_RXDONE); } lora32_standby(lora); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_SINGLE); } void lora32_enable_continuous_rx(lora32_cfg_t *lora) { ESP_LOGD(TAG, "MODE_RX_CONTINUOUS"); if(lora->receive != NULL) { lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_RXDONE); } lora32_standby(lora); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_CONTINUOUS); } void lora32_enable_cad(lora32_cfg_t *lora) { if((lora->cad_done != NULL) | (lora->cad_detected != NULL)) { ESP_LOGD(TAG, "Setting DIO0 to CAD Detect"); lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_CADDET); } ESP_LOGD(TAG, "MODE_CAD_DETECT"); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_CAD_DETECT); } long lora32_get_bandwidth(lora32_cfg_t *lora) { uint8_t bw = (lora32_read_reg(lora, REG_MODEM_CONFIG_1) >> 4); ESP_LOGI(TAG, "lora32_get_bandwidth: %d", bw); if(bw > 9) return -1; ESP_LOGI(TAG, "lora32_get_bandwidth: %ld", bandwidths[bw]); return bandwidths[bw]; } void lora32_set_ldo_flag(lora32_cfg_t *lora) { long symbolDuration = 1000 / (lora32_get_bandwidth(lora) / (1L << lora32_get_spreadingfactor(lora))); ESP_LOGI(TAG, "symbolDuration: %ld", symbolDuration); bool ldoOn = symbolDuration > 16; ESP_LOGI(TAG, "ldoOn: %d", ldoOn); uint8_t modem_config_3 = lora32_read_reg(lora, REG_MODEM_CONFIG_3); ESP_LOGI(TAG, "modem_config_3: %d", modem_config_3); modem_config_3 |= ldoOn << 3; ESP_LOGI(TAG, "modem_config_3: %d", modem_config_3); lora32_write_reg(lora, REG_MODEM_CONFIG_3, modem_config_3); } void lora32_set_bandwidth(lora32_cfg_t *lora, uint8_t bw) { ESP_LOGI(TAG, "lora32_set_bandwidth: %d", bw); uint8_t modem_config_1 = lora32_read_reg(lora, REG_MODEM_CONFIG_1); lora32_write_reg(lora, REG_MODEM_CONFIG_1, (modem_config_1 & 0x0F) | (bw << 4)); lora32_set_ldo_flag(lora); } void lora32_set_coding_rate(lora32_cfg_t *lora, uint8_t cr) { if(cr < 5) cr = 5; else if(cr > 8) cr = 8; cr = cr - 4; ESP_LOGI(TAG, "lora32_set_coding_rate: %d", cr + 4); lora32_write_reg(lora, REG_MODEM_CONFIG_1, (lora32_read_reg(lora, REG_MODEM_CONFIG_1) & 0xF1) | (cr << 1)); } void lora32_set_lna(lora32_cfg_t *lora, uint8_t gain) { // clamp gain values between 0b001 & 0b110 // NOTE: don't clamp until full REG_LNA is implmented //if(gain == 0) gain = 1; //else if(gain > 6) gain = 6; uint8_t lna = lora32_read_reg(lora, REG_LNA); lora32_write_reg(lora, REG_LNA, lna | gain); ESP_LOGI(TAG, "set lna: 0x%2X", lna | gain); } static void lora32_handle_receive(lora32_cfg_t *lora) { uint8_t len = lora32_read_reg(lora, (lora->implicitHeader ? REG_PAYLOAD_LENGTH : REG_RX_NB_BYTES)); ESP_LOGD(TAG, "lora32_handle_receive packet length: %d", len); // TODO: set FIFO address to RX address uint8_t fifo_addr = lora32_read_reg(lora, REG_FIFO_RX_CURRENT_ADDR); ESP_LOGD(TAG, "lora32_handle_receive current FIFO address: %d", fifo_addr); lora32_write_reg(lora, REG_FIFO_ADDR_PTR, fifo_addr); lora->receive(lora, len); } static void IRAM_ATTR lora32_dio_task(void *arg) { // allocate lora32_cfg_t to receive config from Queu lora32_cfg_t *lora = malloc(sizeof(lora32_cfg_t)); ESP_LOGI(TAG, "starting DIO handler task"); while(1) { // wait for event over Queue if(xQueueReceive(dio_event_queue, (void*)&lora, portMAX_DELAY) != pdPASS) continue; // need a better way to log which event and from which config //ESP_LOGI(TAG, "handling DIO0 on GPIO%d", lora->dio0); spi_device_acquire_bus(lora->spi, portMAX_DELAY); // read IRQ flags uint8_t irqs = lora32_read_reg(lora, REG_IRQ_FLAGS); ESP_LOGD(TAG, "reading irqs: %02X", irqs); // clear IRQ flags by writing mask back ESP_LOGD(TAG, "clearing irqs"); lora32_write_reg(lora, REG_IRQ_FLAGS, irqs); spi_device_release_bus(lora->spi); // TODO handle header validation if((irqs & IRQ_RX_DONE) == IRQ_RX_DONE) { lora32_handle_receive(lora); } if((irqs & IRQ_TX_DONE) == IRQ_TX_DONE) { if(lora->tx_done != NULL) lora->tx_done(lora); } bool cad_detected = false; if((irqs & IRQ_CAD_DETECTED) == IRQ_CAD_DETECTED) { // this is for the next clause, CAD Done callback gets true/false cad_detected = true; // no need for arg, cad_detected callback is always presummed true if(lora->cad_detected != NULL) lora->cad_detected(lora); } if((irqs & IRQ_CAD_DONE) == IRQ_CAD_DONE) { // cad_done gets true/false from above, when activity is detected // these *should* fire at the same time, defaults to false if(lora->cad_done != NULL) lora->cad_done(lora, cad_detected); } if((irqs & IRQ_FHSS_CHANGE) == IRQ_FHSS_CHANGE) { ESP_LOGI(TAG, "switching channel %d: %d", lora->channel, lora->channels[lora->channel]); if(lora->channel == 0 && lora->channels[lora->channel] == 0) continue; if(lora->channels[lora->channel] == 0) { ESP_LOGI(TAG, "reseting to channel 0"); lora->channel = 0; } lora32_set_frequency(lora, lora->frequency + (lora->channels[lora->channel] * bandwidths[lora->bandwidth])); lora->channel++; } } } void lora32_read_data(lora32_cfg_t *lora, uint8_t *data) { uint8_t i = 0; uint8_t len = lora32_read_reg(lora, (lora->implicitHeader ? REG_PAYLOAD_LENGTH : REG_RX_NB_BYTES)); ESP_LOGI(TAG, "Reading %d bytes", len); for(i = 0; i < len; i++) { data[i] = lora32_read_reg(lora, REG_FIFO); } } static void IRAM_ATTR lora32_on_dio(void *arg) { xQueueSendFromISR(dio_event_queue, (void*)&arg, pdFALSE); } uint8_t lora32_spi_init(lora32_cfg_t *lora) { ESP_LOGI(TAG, "Initializing SPI bus"); esp_err_t err = ESP_OK; spi_bus_config_t buscfg = { .miso_io_num = lora->cipo, .mosi_io_num = lora->copi, .sclk_io_num = lora->clk, .quadwp_io_num = -1, .quadhd_io_num = -1 }; if(spi_bus_get_attr(lora->spi_host) == NULL) { // 2 should be SPI_DMA_CH_AUTO ??? but it doesn't seem to be defined err = spi_bus_initialize(lora->spi_host, &buscfg, 2); } return err; } uint8_t lora32_init(lora32_cfg_t *lora) { if(spi_semaphore == NULL) { spi_semaphore = xSemaphoreCreateMutex(); } gpio_config_t io_conf; io_conf.intr_type = GPIO_PIN_INTR_DISABLE; io_conf.mode = GPIO_MODE_OUTPUT; io_conf.pin_bit_mask = (1ULL<reset)|(1ULL<nss); io_conf.pull_down_en = 0; io_conf.pull_up_en = 0; gpio_config(&io_conf); lora32_toggle_reset(lora); // set NSS high ESP_LOGI(TAG, "Bringing NSS high: %d", lora->nss); gpio_set_level(lora->nss, 1); vTaskDelay(10 / portTICK_PERIOD_MS); // SPI device setup spi_device_interface_config_t devcfg = { .clock_speed_hz = 8E6, .flags = 0, .mode = 0, .spics_io_num = lora->nss, .queue_size = 7, }; ESP_ERROR_CHECK(spi_bus_add_device(lora->spi_host, &devcfg, &lora->spi)); // initialize event groups lora->handle.events = xEventGroupCreate(); uint8_t version = lora32_read_reg(lora, REG_VERSION); ESP_LOGD(TAG, "lora32_get_id() == 0x%2X", version); // if ID does not match, something is likely wrong on the SPI bus if(version != 0x12) { ESP_LOGD(TAG, "REG_VERSION returned incorrectly. Expected 0x12 got 0x%02X", version); return ERR_LOR_VERSION_MISMATCH; } // TODO: confirm this is happening. Before/after power measurements? lora32_sleep(lora); ESP_LOGI(TAG, "lora32_sleep"); // TODO: VERIFY lora32_set_frequency(lora, lora->frequency); lora32_set_spreadfactor(lora, lora->spreadingFactor); lora32_set_bandwidth(lora, lora->bandwidth); lora32_set_coding_rate(lora, lora->codingRate); lora32_write_reg(lora, REG_FIFO_TX_BASE_ADDR, 0x00); lora32_write_reg(lora, REG_FIFO_RX_BASE_ADDR, 0x00); ESP_LOGI(TAG, "clear rx/tx fifos"); lora32_set_lna(lora, 0x03); // enable auto AGC lora32_write_reg(lora, REG_MODEM_CONFIG_3, 0x04); // TODO make based on config lora32_set_tx_power(lora, 17, PA_OUTPUT_PA_BOOST_PIN); ESP_LOGI(TAG, "lora32_set_tx_power"); lora32_standby(lora); ESP_LOGI(TAG, "lora32_standby"); if(lora->implicitHeader) lora23_set_implicit_header(lora); else lora23_set_explicit_header(lora); // TODO setup shouldn't be based on just receive callback if(lora->receive != NULL) { ESP_LOGI(TAG, "Setting GPIO Interrupt"); // TODO check at least one DIOx pin is not NULL io_conf.intr_type = GPIO_PIN_INTR_POSEDGE; io_conf.pin_bit_mask = ((1ULL << lora->dio0) | (1ULL << lora->dio1) | (1ULL << lora->dio2)); io_conf.mode = GPIO_MODE_INPUT; io_conf.pull_down_en = 0; io_conf.pull_up_en = 0; gpio_config(&io_conf); gpio_set_intr_type(lora->dio0, GPIO_INTR_POSEDGE); gpio_set_intr_type(lora->dio1, GPIO_INTR_POSEDGE); gpio_set_intr_type(lora->dio2, GPIO_INTR_POSEDGE); // the DIO interrupt handling for every device is done from one task if(dio_task_handle == NULL) { ESP_LOGI(TAG, "Setting callback handler and ISR service"); // enable global ISR service gpio_install_isr_service(0); dio_event_queue = xQueueCreate(10, sizeof(lora32_cfg_t *)); // this should probably be high priority xTaskCreate(&lora32_dio_task, "lora32_dio_task", 4096, NULL, 6, &dio_task_handle); } // add ISR handler to the global service started (once) above ESP_LOGI(TAG, "Installing ISR handler for GPIO%d", lora->dio0); if(lora->dio0 > -1) gpio_isr_handler_add(lora->dio0, lora32_on_dio, (void*)lora); if(lora->dio1 > -1) gpio_isr_handler_add(lora->dio1, lora32_on_dio, (void*)lora); if(lora->dio2 > -1) gpio_isr_handler_add(lora->dio2, lora32_on_dio, (void*)lora); } return 1; };