/* * Copyright 2019 by Morgan Allen * * This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International * https://creativecommons.org/licenses/by-nc/4.0/ */ #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/timers.h" #include "freertos/event_groups.h" #include "esp_system.h" #include "esp_log.h" #include "esp_console.h" #include "esp_sleep.h" #include "esp_vfs_dev.h" #include "nvs_flash.h" #include "esp_http_client.h" #include "driver/uart.h" #include "driver/mcpwm.h" #include "soc/mcpwm_reg.h" #include "soc/mcpwm_struct.h" #include "linenoise/linenoise.h" #include "argtable3/argtable3.h" #include "driver/gpio.h" #include "driver/spi_master.h" #include "esp32-wifi-manager.h" #define TAG "CACO" #define GPIO_INPUT_IO_0 33 #define GPIO_INPUT_PIN_SEL ((1ULL<user_data); switch(evt->event_id) { case HTTP_EVENT_ERROR: ESP_LOGI(TAG, "HTTP_EVENT_ERROR"); break; case HTTP_EVENT_ON_CONNECTED: ESP_LOGI(TAG, "HTTP_EVENT_ON_CONNECTED"); break; case HTTP_EVENT_HEADER_SENT: ESP_LOGI(TAG, "HTTP_EVENT_HEADER_SENT"); break; case HTTP_EVENT_ON_HEADER: ESP_LOGI(TAG, "HTTP_EVENT_ON_HEADER"); printf("%.*s", evt->data_len, (char*)evt->data); break; case HTTP_EVENT_ON_DATA: ESP_LOGI(TAG, "HTTP_EVENT_ON_DATA, len=%d", evt->data_len); if (!esp_http_client_is_chunked_response(evt->client)) { printf("%.*s", evt->data_len, (char*)evt->data); } break; case HTTP_EVENT_ON_FINISH: ESP_LOGI(TAG, "HTTP_EVENT_ON_FINISH"); break; case HTTP_EVENT_DISCONNECTED: ESP_LOGI(TAG, "HTTP_EVENT_DISCONNECTED"); break; } return ESP_OK; } void enter_sleep() { ESP_LOGI(TAG, "Enter sleep"); static spi_transaction_t trans[SPI_BUF]; int i; for (i = 0; i < SPI_BUF; i++) { memset(&trans[i], 0, sizeof(spi_transaction_t)); trans[i].length=8*4; trans[i].flags = SPI_TRANS_USE_TXDATA; } trans[1].tx_data[0] = (0b11100000 | 0); trans[1].tx_data[1] = 0; trans[1].tx_data[2] = 0; trans[1].tx_data[3] = 0; memset(&trans[SPI_BUF - 1].tx_data, 0xFF, 4); for(i = 0; i < SPI_BUF; i++) { spi_device_queue_trans(spi, &trans[i], portMAX_DELAY); } esp_sleep_enable_ext0_wakeup(RTC_WAKE_PIN, 0); esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON); //rtc_gpio_isolate(GPIO_INPUT_IO_0); esp_deep_sleep_start(); } void reset_sleep_timer() { xTimerReset(sleep_timer, portMAX_DELAY); xTimerStart(sleep_timer, portMAX_DELAY); } void ping() { esp_http_client_config_t config = { .url = "http://192.168.0.1/_gr", .method = HTTP_METHOD_POST, }; esp_http_client_handle_t client = esp_http_client_init(&config); esp_http_client_set_post_field(client, CMD_BEEP, strlen(CMD_BEEP)); esp_err_t err = esp_http_client_perform(client); if (err == ESP_OK) { ESP_LOGI(TAG, "Status = %d, content_length = %d", esp_http_client_get_status_code(client), esp_http_client_get_content_length(client)); } } void shoot() { ESP_LOGI(TAG, "shooting"); esp_http_client_config_t config = { .url = "http://192.168.0.1/v1/camera/shoot", .method = HTTP_METHOD_POST, }; esp_http_client_handle_t client = esp_http_client_init(&config); esp_http_client_set_post_field(client, CMD_BEEP, strlen(CMD_BEEP)); esp_err_t err = esp_http_client_perform(client); if (err == ESP_OK) { ESP_LOGI(TAG, "Status = %d, content_length = %d", esp_http_client_get_status_code(client), esp_http_client_get_content_length(client)); } } void request(char *path) { char *url = malloc(strlen(BASE_URL) + strlen(path) + 1); strcpy(url, BASE_URL); strcat(url, path); ESP_LOGI(TAG, "Making request to %s", url); esp_http_client_config_t config = { .url = url, .event_handler = _http_event_handle }; esp_http_client_handle_t client = esp_http_client_init(&config); esp_err_t err = esp_http_client_perform(client); if (err == ESP_OK) { ESP_LOGI(TAG, "Status = %d, content_length = %d", esp_http_client_get_status_code(client), esp_http_client_get_content_length(client)); } } void led_loop() { uint8_t v = 0; while(true) { if(xQueueReceive(wm_event_queue, &v, portMAX_DELAY)) { EventBits_t ev_bits = xEventGroupGetBits(wm_event_group); ESP_LOGI(TAG, "got event: %d", ev_bits); static spi_transaction_t trans[SPI_BUF]; int i; for (i = 0; i < SPI_BUF; i++) { memset(&trans[i], 0, sizeof(spi_transaction_t)); trans[i].length=8*4; trans[i].flags = SPI_TRANS_USE_TXDATA; } trans[1].tx_data[0] = (0b11100000 | 1); if(ev_bits & WIFI_CONNECTED) { trans[1].tx_data[1] = 0; trans[1].tx_data[2] = 127; trans[1].tx_data[3] = 0; } else if(ev_bits & WIFI_SCANNING) { trans[1].tx_data[1] = 0; trans[1].tx_data[2] = 55; trans[1].tx_data[3] = 127; } else if(ev_bits & WIFI_CONNECTING) { trans[1].tx_data[1] = 127; trans[1].tx_data[2] = 127; trans[1].tx_data[3] = 0; } else if(ev_bits & WIFI_IDLE) { trans[1].tx_data[1] = 0; trans[1].tx_data[2] = 0; trans[1].tx_data[3] = 127; } memset(&trans[SPI_BUF - 1].tx_data, 0xFF, 4); for(i = 0; i < SPI_BUF; i++) { spi_device_queue_trans(spi, &trans[i], portMAX_DELAY); } } } } void pwm_init() { mcpwm_gpio_init(MCPWM_UNIT_0, MCPWM0A, 21); mcpwm_config_t pwm_config; pwm_config.frequency = 50; //frequency = 50Hz, i.e. for every servo motor time period should be 20ms pwm_config.cmpr_a = 0; //duty cycle of PWMxA = 0 pwm_config.cmpr_b = 0; //duty cycle of PWMxb = 0 pwm_config.counter_mode = MCPWM_UP_COUNTER; pwm_config.duty_mode = MCPWM_DUTY_MODE_0; mcpwm_init(MCPWM_UNIT_0, MCPWM_TIMER_0, &pwm_config); //Configure PWM0A & PWM0B with above settings } void servo() { ESP_LOGI(TAG, "value: %d duration: %d", servo_args.value->ival[0], servo_args.duration->ival[0]); while(true) { mcpwm_set_duty_in_us(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A, servo_args.value->ival[0]); vTaskDelay(servo_args.duration->ival[0] / portTICK_PERIOD_MS); mcpwm_set_duty_in_us(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_OPR_A, 1500); vTaskDelay(5000 / portTICK_PERIOD_MS); } } bool running = false; static int servo_start(int argc, char **argv) { int nerrors = arg_parse(argc, argv, (void**) &servo_args); if (nerrors != 0) { arg_print_errors(stderr, servo_args.end, argv[0]); return 1; } if(!running) { running = true; xTaskCreate(&servo, "servo", 4096, NULL, 6, NULL); } return ESP_OK; } void register_servo_cmd() { servo_args.value = arg_int0("v", "value", "", "move value in us"); servo_args.value->ival[0] = 1200; servo_args.duration = arg_int0("d", "duration", "", "duration in ms"); servo_args.end = arg_end(2); const esp_console_cmd_t start_cmd = { .command = "start", .help = "Starts the servo", .hint = NULL, .func = &servo_start, .argtable = &servo_args }; ESP_ERROR_CHECK( esp_console_cmd_register(&start_cmd) ); } static void IRAM_ATTR gpio_isr_handler(void* arg) { uint32_t gpio_num = (uint32_t) arg; xQueueSendFromISR(gpio_evt_queue, &gpio_num, NULL); } void gpio_loop() { int8_t state = -1; uint32_t io_num; for(;;) { if(xQueueReceive(gpio_evt_queue, &io_num, portMAX_DELAY)) { uint8_t level = gpio_get_level(io_num); // don't act on state level twice if(level == state) continue; // track level for duplicate state = level; EventBits_t ev_bits = xEventGroupGetBits(wm_event_group); ESP_LOGI(TAG, "gpio_loop: %d", ev_bits); if(level == 0 && (ev_bits & WIFI_CONNECTED) == 0) { ESP_LOGI(TAG, "No connectiong, connecting"); wifi_manager_scan(); continue; } printf("GPIO[%d] intr, val: %d\n", io_num, level); reset_sleep_timer(); if(level == 0) { xTimerChangePeriod(button_timer, CONFIG_TIMEOUT_SHOOT, portMAX_DELAY); xTimerStart(button_timer, portMAX_DELAY); } else { xTimerStop(button_timer, portMAX_DELAY); } } } } void handle_button_timer() { shoot(); } void gpio_init() { gpio_config_t io_conf; io_conf.intr_type = GPIO_PIN_INTR_ANYEDGE; io_conf.mode = GPIO_MODE_INPUT; io_conf.pin_bit_mask = GPIO_INPUT_PIN_SEL; io_conf.pull_down_en = 0; io_conf.pull_up_en = 1; gpio_config(&io_conf); gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT); gpio_isr_handler_add(GPIO_INPUT_IO_0, gpio_isr_handler, (void*) GPIO_INPUT_IO_0); //create a queue to handle gpio event from isr gpio_evt_queue = xQueueCreate(10, sizeof(uint32_t)); //start gpio task button_timer = xTimerCreate("gpio_timer", 1000, pdFALSE, (void*)NULL, handle_button_timer); sleep_timer = xTimerCreate("sleep_timer", CONFIG_SLEEP_TIMEOUT, pdFALSE, (void*)NULL, enter_sleep); reset_sleep_timer(); xTaskCreate(gpio_loop, "gpio_loop", 2048, NULL, 10, NULL); } void spi_init() { esp_err_t ret; spi_bus_config_t buscfg={ .mosi_io_num=PIN_NUM_MOSI, .sclk_io_num=PIN_NUM_CLK, .quadwp_io_num=-1, .quadhd_io_num=-1, .max_transfer_sz=120*320*2+8 }; spi_device_interface_config_t devcfg={ .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz .mode=0, //SPI mode 0 .queue_size=7, //We want to be able to queue 7 transactions at a time //.pre_cb=lcd_spi_pre_transfer_callback, //Specify pre-transfer callback to handle D/C line }; //Initialize the SPI bus ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); ESP_ERROR_CHECK(ret); //Attach the LCD to the SPI bus ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi); ESP_ERROR_CHECK(ret); static spi_transaction_t trans[SPI_BUF]; int i; for (i = 0; i < SPI_BUF; i++) { memset(&trans[i], 0, sizeof(spi_transaction_t)); trans[i].length=8*4; trans[i].flags = SPI_TRANS_USE_TXDATA; } trans[1].tx_data[0] = (0b11100000 | 1); trans[1].tx_data[1] = 127; trans[1].tx_data[2] = 127; trans[1].tx_data[3] = 127; memset(&trans[SPI_BUF - 1].tx_data, 0xFF, 4); for(i = 0; i < SPI_BUF; i++) { ret = spi_device_queue_trans(spi, &trans[i], portMAX_DELAY); assert(ret==ESP_OK); } } void app_main() { esp_err_t ret; // Initialize NVS. ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES) { ESP_LOGI(TAG, "Erasing flash memory"); ESP_ERROR_CHECK(nvs_flash_erase()); ret = nvs_flash_init(); } ESP_ERROR_CHECK( ret ); uint8_t *mac; mac = (uint8_t *)malloc(6); esp_efuse_mac_get_default(mac); id = mac[5]; ESP_LOGI(TAG, "MAC: %X:%X:%X:%X:%X:%X\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); wm_event_group = wifi_manager_start(); wifi_manager_reset_store(); if(wifi_manager_ap_count() == 0) { ESP_LOGI(TAG, "Adding new AP"); if(strlen(CONFIG_WIFI_MANAGER_TEST_AP) > 0) { wifi_manager_add_ap(CONFIG_WIFI_MANAGER_TEST_AP, CONFIG_WIFI_MANAGER_TEST_PWD); } } gpio_init(); spi_init(); xTaskCreate(&led_loop, "led_loop", 4096, NULL, 6, NULL); wifi_manager_scan(); };