OMOTE/Platformio/hardware/ESP32/sleep_hal_esp32.cpp

255 lines
7.9 KiB
C++

#include <Arduino.h>
#include "SparkFunLIS3DH.h"
#include "sleep_hal_esp32.h"
// before going to sleep, some tasks have to be done
// save settings
#include "preferencesStorage_hal_esp32.h"
// turn off power of IR receiver
#include "infrared_receiver_hal_esp32.h"
// turn off tft
#include "tft_hal_esp32.h"
// disconnect WiFi
#include "mqtt_hal_esp32.h"
// disconnect BLE keyboard
#include "keyboard_ble_hal_esp32.h"
// prepare keypad keys to wakeup
#include "keypad_keys_hal_esp32.h"
uint8_t ACC_INT_GPIO = 13;
int MOTION_THRESHOLD = 50; // motion above threshold keeps device awake
int DEFAULT_SLEEP_TIMEOUT = 20000; // default time until device enters sleep mode in milliseconds. Can be overridden.
// is "lift to wake" enabled
bool wakeupByIMUEnabled = true;
// timeout before going to sleep
uint32_t sleepTimeout;
// Timestamp of the last activity. Go to sleep if (millis() - lastActivityTimestamp > sleepTimeout)
uint32_t lastActivityTimestamp;
LIS3DH IMU(I2C_MODE, 0x19);
Wakeup_reasons wakeup_reason;
void setLastActivityTimestamp_HAL() {
// There was motion, touchpad or key hit.
// Set the time where this happens.
lastActivityTimestamp = millis();
}
void activityDetection() {
// if there is any motion, setLastActivityTimestamp_HAL() is called
int motion = 0;
// A variable declared static inside a function is visible only inside that function, exists only once (not created/destroyed for each call) and is permanent. It is in a sense a private global variable.
static int accXold;
static int accYold;
static int accZold;
int accX = IMU.readFloatAccelX()*1000;
int accY = IMU.readFloatAccelY()*1000;
int accZ = IMU.readFloatAccelZ()*1000;
// determine motion value as da/dt
motion = (abs(accXold - accX) + abs(accYold - accY) + abs(accZold - accZ));
// If the motion exceeds the threshold, the lastActivityTimestamp is updated
if(motion > MOTION_THRESHOLD) {
setLastActivityTimestamp_HAL();
}
// Store the current acceleration and time
accXold = accX;
accYold = accY;
accZold = accZ;
}
void configIMUInterruptsBeforeGoingToSleep()
{
uint8_t dataToWrite = 0;
//LIS3DH_INT1_CFG
//dataToWrite |= 0x80;//AOI, 0 = OR 1 = AND
//dataToWrite |= 0x40;//6D, 0 = interrupt source, 1 = 6 direction source
//Set these to enable individual axes of generation source (or direction)
// -- high and low are used generically
dataToWrite |= 0x20;//Z high
//dataToWrite |= 0x10;//Z low
dataToWrite |= 0x08;//Y high
//dataToWrite |= 0x04;//Y low
dataToWrite |= 0x02;//X high
//dataToWrite |= 0x01;//X low
if (wakeupByIMUEnabled) {
IMU.writeRegister(LIS3DH_INT1_CFG, 0b00101010);
} else {
IMU.writeRegister(LIS3DH_INT1_CFG, 0b00000000);
}
//LIS3DH_INT1_THS
dataToWrite = 0;
//Provide 7 bit value, 0x7F always equals max range by accelRange setting
dataToWrite |= 0x45;
IMU.writeRegister(LIS3DH_INT1_THS, dataToWrite);
//LIS3DH_INT1_DURATION
dataToWrite = 0;
//minimum duration of the interrupt
//LSB equals 1/(sample rate)
dataToWrite |= 0x00; // 1 * 1/50 s = 20ms
IMU.writeRegister(LIS3DH_INT1_DURATION, dataToWrite);
//LIS3DH_CTRL_REG5
//Int1 latch interrupt and 4D on int1 (preserve fifo en)
IMU.readRegister(&dataToWrite, LIS3DH_CTRL_REG5);
dataToWrite &= 0xF3; //Clear bits of interest
dataToWrite |= 0x08; //Latch interrupt (Cleared by reading int1_src)
//dataToWrite |= 0x04; //Pipe 4D detection from 6D recognition to int1?
IMU.writeRegister(LIS3DH_CTRL_REG5, dataToWrite);
//LIS3DH_CTRL_REG3
//Choose source for pin 1
dataToWrite = 0;
//dataToWrite |= 0x80; //Click detect on pin 1
dataToWrite |= 0x40; //AOI1 event (Generator 1 interrupt on pin 1)
dataToWrite |= 0x20; //AOI2 event ()
//dataToWrite |= 0x10; //Data ready
//dataToWrite |= 0x04; //FIFO watermark
//dataToWrite |= 0x02; //FIFO overrun
IMU.writeRegister(LIS3DH_CTRL_REG3, dataToWrite);
}
// Enter Sleep Mode
void enterSleep(){
// Save settings to internal flash memory
save_preferences_HAL();
// Configure IMU
uint8_t intDataRead;
// clear interrupt
IMU.readRegister(&intDataRead, LIS3DH_INT1_SRC);
configIMUInterruptsBeforeGoingToSleep();
// really clear interrupt
IMU.readRegister(&intDataRead, LIS3DH_INT1_SRC);
#if (ENABLE_WIFI_AND_MQTT == 1)
// Power down modem
wifiStop_HAL();
#endif
#if (ENABLE_KEYBOARD_BLE == 1)
keyboardBLE_end_HAL();
#endif
// Prepare IO states
digitalWrite(TFT_DC, LOW); // LCD control signals off
digitalWrite(TFT_CS, LOW);
digitalWrite(TFT_MOSI, LOW);
digitalWrite(TFT_SCLK, LOW);
digitalWrite(LCD_EN_GPIO, HIGH); // LCD logic off
digitalWrite(LCD_BL_GPIO, HIGH); // LCD backlight off
// pinMode(CRG_STAT, INPUT); // Disable Pull-Up
pinMode(IR_RX_GPIO, INPUT); // force IR receiver pin to INPUT to prevent high current during sleep (additional 60 uA)
digitalWrite(IR_VCC_GPIO, LOW); // IR Receiver off
// Configure button matrix for ext1 interrupt
pinMode(SW_1_GPIO, OUTPUT);
pinMode(SW_2_GPIO, OUTPUT);
pinMode(SW_3_GPIO, OUTPUT);
pinMode(SW_4_GPIO, OUTPUT);
pinMode(SW_5_GPIO, OUTPUT);
digitalWrite(SW_1_GPIO, HIGH);
digitalWrite(SW_2_GPIO, HIGH);
digitalWrite(SW_3_GPIO, HIGH);
digitalWrite(SW_4_GPIO, HIGH);
digitalWrite(SW_5_GPIO, HIGH);
gpio_hold_en((gpio_num_t)SW_1_GPIO);
gpio_hold_en((gpio_num_t)SW_2_GPIO);
gpio_hold_en((gpio_num_t)SW_3_GPIO);
gpio_hold_en((gpio_num_t)SW_4_GPIO);
gpio_hold_en((gpio_num_t)SW_5_GPIO);
// Force display pins to high impedance
// Without this the display might not wake up from sleep
pinMode(LCD_BL_GPIO, INPUT);
pinMode(LCD_EN_GPIO, INPUT);
gpio_hold_en((gpio_num_t)LCD_BL_GPIO);
gpio_hold_en((gpio_num_t)LCD_EN_GPIO);
gpio_deep_sleep_hold_en();
esp_sleep_enable_ext1_wakeup(BUTTON_PIN_BITMASK, ESP_EXT1_WAKEUP_ANY_HIGH);
delay(100);
// Sleep
esp_deep_sleep_start();
}
void init_sleep_HAL() {
// will be called after boot or wakeup. Releases GPIO hold and sets wakeup_reason
if (sleepTimeout == 0){
sleepTimeout = DEFAULT_SLEEP_TIMEOUT;
}
// Find out wakeup cause
if (esp_sleep_get_wakeup_cause() == ESP_SLEEP_WAKEUP_EXT1) {
if (log(esp_sleep_get_ext1_wakeup_status())/log(2) == 13) {
wakeup_reason = WAKEUP_BY_IMU;
} else {
wakeup_reason = WAKEUP_BY_KEYPAD;
}
} else {
wakeup_reason = WAKEUP_BY_RESET;
}
pinMode(ACC_INT_GPIO, INPUT);
// Release GPIO hold in case we are coming out of standby
gpio_hold_dis((gpio_num_t)SW_1_GPIO);
gpio_hold_dis((gpio_num_t)SW_2_GPIO);
gpio_hold_dis((gpio_num_t)SW_3_GPIO);
gpio_hold_dis((gpio_num_t)SW_4_GPIO);
gpio_hold_dis((gpio_num_t)SW_5_GPIO);
gpio_hold_dis((gpio_num_t)LCD_EN_GPIO);
gpio_hold_dis((gpio_num_t)LCD_BL_GPIO);
gpio_deep_sleep_hold_dis();
}
void init_IMU_HAL(void) {
// setup IMU to recognize motion
IMU.settings.accelSampleRate = 50; //Hz. Can be: 0,1,10,25,50,100,200,400,1600,5000 Hz
IMU.settings.accelRange = 2; //Max G force readable. Can be: 2, 4, 8, 16
IMU.settings.adcEnabled = 0;
IMU.settings.tempEnabled = 0;
IMU.settings.xAccelEnabled = 1;
IMU.settings.yAccelEnabled = 1;
IMU.settings.zAccelEnabled = 1;
IMU.begin();
uint8_t intDataRead;
IMU.readRegister(&intDataRead, LIS3DH_INT1_SRC);//clear interrupt
}
void check_activity_HAL() {
activityDetection();
if(millis() - lastActivityTimestamp > sleepTimeout){
Serial.println("Entering Sleep Mode. Goodbye.");
enterSleep();
}
}
uint32_t get_sleepTimeout_HAL() {
return sleepTimeout;
}
void set_sleepTimeout_HAL(uint32_t aSleepTimeout) {
sleepTimeout = aSleepTimeout;
// For reason unknown, some users reported sleepTimeout was set to 0. In this case device would immediately go to sleep. Prevent this.
if (sleepTimeout == 0) {
sleepTimeout = DEFAULT_SLEEP_TIMEOUT;
}
}
bool get_wakeupByIMUEnabled_HAL() {
return wakeupByIMUEnabled;
}
void set_wakeupByIMUEnabled_HAL(bool aWakeupByIMUEnabled) {
wakeupByIMUEnabled = aWakeupByIMUEnabled;
}
uint32_t get_lastActivityTimestamp() {
return lastActivityTimestamp;
}