OMOTE/Platformio/HAL/Targets/ESP32/HardwareRevX.cpp
MatthewColvin efa2d4a137 Rework Mains so they are basically as identical as possible.
Create HardwareFactory which is responsible for providing the HardwareAbstract to any part of the program based on compiler defines
2023-10-15 08:24:29 -05:00

321 lines
No EOL
9.5 KiB
C++

#include "HardwareRevX.hpp"
#include "display.hpp"
#include "wifihandler.hpp"
void HardwareRevX::initIO() {
// Button Pin Definition
pinMode(SW_1, OUTPUT);
pinMode(SW_2, OUTPUT);
pinMode(SW_3, OUTPUT);
pinMode(SW_4, OUTPUT);
pinMode(SW_5, OUTPUT);
pinMode(SW_A, INPUT);
pinMode(SW_B, INPUT);
pinMode(SW_C, INPUT);
pinMode(SW_D, INPUT);
pinMode(SW_E, INPUT);
// Power Pin Definition
pinMode(CRG_STAT, INPUT_PULLUP);
pinMode(ADC_BAT, INPUT);
// IR Pin Definition
pinMode(IR_RX, INPUT);
pinMode(IR_LED, OUTPUT);
pinMode(IR_VCC, OUTPUT);
digitalWrite(IR_LED, HIGH); // HIGH off - LOW on
digitalWrite(IR_VCC, LOW); // HIGH on - LOW off
// LCD Pin Definition
pinMode(LCD_EN, OUTPUT);
digitalWrite(LCD_EN, HIGH);
pinMode(LCD_BL, OUTPUT);
digitalWrite(LCD_BL, HIGH);
// Other Pin Definition
pinMode(ACC_INT, INPUT);
pinMode(USER_LED, OUTPUT);
digitalWrite(USER_LED, LOW);
// Release GPIO hold in case we are coming out of standby
gpio_hold_dis((gpio_num_t)SW_1);
gpio_hold_dis((gpio_num_t)SW_2);
gpio_hold_dis((gpio_num_t)SW_3);
gpio_hold_dis((gpio_num_t)SW_4);
gpio_hold_dis((gpio_num_t)SW_5);
gpio_hold_dis((gpio_num_t)LCD_EN);
gpio_hold_dis((gpio_num_t)LCD_BL);
gpio_deep_sleep_hold_dis();
}
HardwareRevX::HardwareRevX() : HardwareAbstract() {}
HardwareRevX::WakeReason getWakeReason() {
// Find out wakeup cause
if (esp_sleep_get_wakeup_cause() == ESP_SLEEP_WAKEUP_EXT1) {
if (log(esp_sleep_get_ext1_wakeup_status()) / log(2) == 13)
return HardwareRevX::WakeReason::IMU;
else
return HardwareRevX::WakeReason::KEYPAD;
} else {
return HardwareRevX::WakeReason::RESET;
}
}
void HardwareRevX::init() {
// Make sure ESP32 is running at full speed
setCpuFrequencyMhz(240);
wakeup_reason = getWakeReason();
initIO();
Serial.begin(115200);
mDisplay = Display::getInstance();
mBattery = std::make_shared<Battery>(ADC_BAT, CRG_STAT);
mWifiHandler = wifiHandler::getInstance();
mKeys = std::make_shared<Keys>();
restorePreferences();
mTouchHandler.SetNotification(mDisplay->TouchNotification());
mTouchHandler = [this]([[maybe_unused]] auto touchPoint) {
standbyTimer = this->getSleepTimeout();
};
setupIMU();
setupIR();
debugPrint("Finished Hardware Setup in %d", millis());
}
void HardwareRevX::debugPrint(const char *fmt, ...) {
char result[100];
va_list arguments;
va_start(arguments, fmt);
vsnprintf(result, 100, fmt, arguments);
va_end(arguments);
Serial.print(result);
}
std::shared_ptr<wifiHandlerInterface> HardwareRevX::wifi() {
return mWifiHandler;
}
std::shared_ptr<BatteryInterface> HardwareRevX::battery() { return mBattery; }
std::shared_ptr<DisplayAbstract> HardwareRevX::display() { return mDisplay; }
std::shared_ptr<KeyPressAbstract> HardwareRevX::keys() { return mKeys; }
void HardwareRevX::activityDetection() {
static int accXold;
static int accYold;
static int accZold;
int accX = IMU.readFloatAccelX() * 1000;
int accY = IMU.readFloatAccelY() * 1000;
int accZ = IMU.readFloatAccelZ() * 1000;
// determine motion value as da/dt
motion = (abs(accXold - accX) + abs(accYold - accY) + abs(accZold - accZ));
// Calculate time to standby
standbyTimer -= 100;
if (standbyTimer < 0)
standbyTimer = 0;
// If the motion exceeds the threshold, the standbyTimer is reset
if (motion > MOTION_THRESHOLD)
standbyTimer = sleepTimeout;
// Store the current acceleration and time
accXold = accX;
accYold = accY;
accZold = accZ;
}
char HardwareRevX::getCurrentDevice() { return currentDevice; }
void HardwareRevX::setCurrentDevice(char currentDevice) {
this->currentDevice = currentDevice;
}
bool HardwareRevX::getWakeupByIMUEnabled() { return wakeupByIMUEnabled; }
void HardwareRevX::setWakeupByIMUEnabled(bool wakeupByIMUEnabled) {
this->wakeupByIMUEnabled = wakeupByIMUEnabled;
}
uint16_t HardwareRevX::getSleepTimeout() { return sleepTimeout; }
void HardwareRevX::setSleepTimeout(uint16_t sleepTimeout) {
this->sleepTimeout = sleepTimeout;
standbyTimer = sleepTimeout;
}
void HardwareRevX::enterSleep() {
// Save settings to internal flash memory
preferences.putBool("wkpByIMU", wakeupByIMUEnabled);
preferences.putUChar("blBrightness", mDisplay->getBrightness());
preferences.putUChar("currentDevice", currentDevice);
preferences.putUInt("sleepTimeout", sleepTimeout);
if (!preferences.getBool("alreadySetUp"))
preferences.putBool("alreadySetUp", true);
preferences.end();
// Configure IMU
uint8_t intDataRead;
IMU.readRegister(&intDataRead, LIS3DH_INT1_SRC); // clear interrupt
configIMUInterrupts();
IMU.readRegister(&intDataRead,
LIS3DH_INT1_SRC); // really clear interrupt
// Prepare IO states
digitalWrite(LCD_DC, LOW); // LCD control signals off
digitalWrite(LCD_CS, LOW);
digitalWrite(LCD_MOSI, LOW);
digitalWrite(LCD_SCK, LOW);
digitalWrite(LCD_EN, HIGH); // LCD logic off
digitalWrite(LCD_BL, HIGH); // LCD backlight off
pinMode(CRG_STAT, INPUT); // Disable Pull-Up
digitalWrite(IR_VCC, LOW); // IR Receiver off
// Configure button matrix for ext1 interrupt
pinMode(SW_1, OUTPUT);
pinMode(SW_2, OUTPUT);
pinMode(SW_3, OUTPUT);
pinMode(SW_4, OUTPUT);
pinMode(SW_5, OUTPUT);
digitalWrite(SW_1, HIGH);
digitalWrite(SW_2, HIGH);
digitalWrite(SW_3, HIGH);
digitalWrite(SW_4, HIGH);
digitalWrite(SW_5, HIGH);
gpio_hold_en((gpio_num_t)SW_1);
gpio_hold_en((gpio_num_t)SW_2);
gpio_hold_en((gpio_num_t)SW_3);
gpio_hold_en((gpio_num_t)SW_4);
gpio_hold_en((gpio_num_t)SW_5);
// Force display pins to high impedance
// Without this the display might not wake up from sleep
pinMode(LCD_BL, INPUT);
pinMode(LCD_EN, INPUT);
gpio_hold_en((gpio_num_t)LCD_BL);
gpio_hold_en((gpio_num_t)LCD_EN);
gpio_deep_sleep_hold_en();
esp_sleep_enable_ext1_wakeup(BUTTON_PIN_BITMASK, ESP_EXT1_WAKEUP_ANY_HIGH);
delay(100);
// Sleep
esp_deep_sleep_start();
}
void HardwareRevX::configIMUInterrupts() {
uint8_t dataToWrite = 0;
// LIS3DH_INT1_CFG
// dataToWrite |= 0x80;//AOI, 0 = OR 1 = AND
// dataToWrite |= 0x40;//6D, 0 = interrupt source, 1 = 6 direction source
// Set these to enable individual axes of generation source (or direction)
// -- high and low are used generically
dataToWrite |= 0x20; // Z high
// dataToWrite |= 0x10;//Z low
dataToWrite |= 0x08; // Y high
// dataToWrite |= 0x04;//Y low
dataToWrite |= 0x02; // X high
// dataToWrite |= 0x01;//X low
if (wakeupByIMUEnabled)
IMU.writeRegister(LIS3DH_INT1_CFG, 0b00101010);
else
IMU.writeRegister(LIS3DH_INT1_CFG, 0b00000000);
// LIS3DH_INT1_THS
dataToWrite = 0;
// Provide 7 bit value, 0x7F always equals max range by accelRange setting
dataToWrite |= 0x45;
IMU.writeRegister(LIS3DH_INT1_THS, dataToWrite);
// LIS3DH_INT1_DURATION
dataToWrite = 0;
// minimum duration of the interrupt
// LSB equals 1/(sample rate)
dataToWrite |= 0x00; // 1 * 1/50 s = 20ms
IMU.writeRegister(LIS3DH_INT1_DURATION, dataToWrite);
// LIS3DH_CTRL_REG5
// Int1 latch interrupt and 4D on int1 (preserve fifo en)
IMU.readRegister(&dataToWrite, LIS3DH_CTRL_REG5);
dataToWrite &= 0xF3; // Clear bits of interest
dataToWrite |= 0x08; // Latch interrupt (Cleared by reading int1_src)
// dataToWrite |= 0x04; //Pipe 4D detection from 6D recognition to int1?
IMU.writeRegister(LIS3DH_CTRL_REG5, dataToWrite);
// LIS3DH_CTRL_REG3
// Choose source for pin 1
dataToWrite = 0;
// dataToWrite |= 0x80; //Click detect on pin 1
dataToWrite |= 0x40; // AOI1 event (Generator 1 interrupt on pin 1)
dataToWrite |= 0x20; // AOI2 event ()
// dataToWrite |= 0x10; //Data ready
// dataToWrite |= 0x04; //FIFO watermark
// dataToWrite |= 0x02; //FIFO overrun
IMU.writeRegister(LIS3DH_CTRL_REG3, dataToWrite);
}
void HardwareRevX::restorePreferences() {
// Restore settings from internal flash memory
int backlight_brightness = 255;
preferences.begin("settings", false);
if (preferences.getBool("alreadySetUp")) {
wakeupByIMUEnabled = preferences.getBool("wkpByIMU");
backlight_brightness = preferences.getUChar("blBrightness");
currentDevice = preferences.getUChar("currentDevice");
sleepTimeout = preferences.getUInt("sleepTimeout");
// setting the default to prevent a 0ms sleep timeout
if (sleepTimeout == 0) {
sleepTimeout = SLEEP_TIMEOUT;
}
}
mDisplay->setBrightness(backlight_brightness);
}
void HardwareRevX::setupIMU() {
// Setup hal
IMU.settings.accelSampleRate =
50; // Hz. Can be: 0,1,10,25,50,100,200,400,1600,5000 Hz
IMU.settings.accelRange = 2; // Max G force readable. Can be: 2, 4, 8, 16
IMU.settings.adcEnabled = 0;
IMU.settings.tempEnabled = 0;
IMU.settings.xAccelEnabled = 1;
IMU.settings.yAccelEnabled = 1;
IMU.settings.zAccelEnabled = 1;
IMU.begin();
uint8_t intDataRead;
IMU.readRegister(&intDataRead, LIS3DH_INT1_SRC); // clear interrupt
}
void HardwareRevX::setupIR() {
// Setup IR
IrSender.begin();
digitalWrite(IR_VCC, HIGH); // Turn on IR receiver
IrReceiver.enableIRIn(); // Start the receiver
}
void HardwareRevX::startTasks() {}
void HardwareRevX::loopHandler() {
standbyTimer < 2000 ? mDisplay->sleep() : mDisplay->wake();
// TODO move to debug task
// Blink debug LED at 1 Hz
digitalWrite(USER_LED, millis() % 1000 > 500);
// Refresh IMU data at 10Hz
static unsigned long IMUTaskTimer = millis();
if (millis() - IMUTaskTimer >= 100) {
activityDetection();
if (standbyTimer == 0) {
Serial.println("Entering Sleep Mode. Goodbye.");
enterSleep();
}
IMUTaskTimer = millis();
}
}