Compare commits

...

21 commits

Author SHA1 Message Date
Morgan 'ARR\!' Allen
97204f089b cleanup of IRQ pin setting 2023-09-06 16:45:20 -07:00
Morgan 'ARR\!' Allen
9d1bd57a2e move all LOGI to more severe log levels 2023-01-16 22:58:40 -08:00
Morgan 'ARR\!' Allen
41065d791e change lora32_cfg_t pin types to int8_t and default to -1 2022-05-02 15:13:53 -07:00
Morgan 'ARR\!' Allen
e8b52e7c78 (hopefully) basic sensible default radio settings 2022-04-06 15:46:02 -07:00
Morgan 'ARR\!' Allen
150a23dbaf remove name from lora32_cfg_t. this was really part of loracomm. lora32_cfg_t should use a void* 2022-04-01 14:19:21 -07:00
Morgan 'ARR\!' Allen
19a233de27 consistently name _spreadfactor and update config object call _set call 2022-04-01 14:17:40 -07:00
Morgan 'ARR\!' Allen
985939ea80 add get packet RSSI and current RSSI 2021-12-09 22:13:50 -08:00
Morgan 'ARR\!' Allen
d7db736937 include name 2021-12-08 14:08:36 -08:00
Morgan 'ARR\!' Allen
e912b54cba Merge branch 'fhss' into fhss-merge (development) 2021-12-08 12:32:06 -08:00
Morgan 'ARR\!' Allen
d93f3399bc properly handle _cfg_t pointers for ISR handling scheme 2021-12-07 18:12:28 -08:00
Morgan 'ARR\!' Allen
c5dc9c961d add new dio handlers, consolidate DIO handlers to single function 2021-12-02 10:03:05 -08:00
Morgan 'ARR\!' Allen
a347f418c8 add FHSS IRQ handling 2021-12-02 10:02:08 -08:00
Morgan 'ARR\!' Allen
6ad9cba796 add primary enable/disable functions for FHSS 2021-12-02 10:01:37 -08:00
Morgan 'ARR\!' Allen
b476a41c92 add more dio pins to lora_cfg, channels, (en/dis)able methods for FHSS 2021-12-02 10:00:57 -08:00
Morgan 'ARR\!' Allen
1396434448 add register for FHSS 2021-12-02 09:59:44 -08:00
Morgan 'ARR\!' Allen
c8beb458f6 set header mode during init based on lora32_cfg_t->implicitHeader state 2021-11-19 10:53:01 -08:00
Morgan 'ARR\!' Allen
7ec011f15a debug log setting header mode 2021-11-19 10:52:22 -08:00
Morgan 'ARR\!' Allen
db9b74ec76 renamed idle to standby to better reflect datasheet
lowered some log levels
2021-11-17 19:33:44 -08:00
Morgan 'ARR\!' Allen
14cd5df1e3 implement single RX, still needs timeout handling 2021-11-17 19:31:10 -08:00
Morgan 'ARR\!' Allen
8f07873624 reimplementing semephore and bus locking seems to have helped overall stability, particularly on first init 2021-11-17 19:30:01 -08:00
Morgan 'ARR\!' Allen
dc78e9b137 remove assert(REG_VERSION) in favor of returning error so application recovery is possible 2021-11-17 19:28:46 -08:00
2 changed files with 183 additions and 63 deletions

View file

@ -23,12 +23,13 @@
#define REG_IRQ_FLAGS 0x12 #define REG_IRQ_FLAGS 0x12
#define REG_RX_NB_BYTES 0x13 #define REG_RX_NB_BYTES 0x13
#define REG_PKT_RSSI_VALUE 0x1a #define REG_PKT_RSSI_VALUE 0x1a
#define REG_PKT_SNR_VALUE 0x1b #define REG_RSSI_VALUE 0x1b
#define REG_MODEM_CONFIG_1 0x1d #define REG_MODEM_CONFIG_1 0x1d
#define REG_MODEM_CONFIG_2 0x1e #define REG_MODEM_CONFIG_2 0x1e
#define REG_PREAMBLE_MSB 0x20 #define REG_PREAMBLE_MSB 0x20
#define REG_PREAMBLE_LSB 0x21 #define REG_PREAMBLE_LSB 0x21
#define REG_PAYLOAD_LENGTH 0x22 #define REG_PAYLOAD_LENGTH 0x22
#define REG_HOP_PERIOD 0x24
#define REG_MODEM_CONFIG_3 0x26 #define REG_MODEM_CONFIG_3 0x26
#define REG_RSSI_WIDEBAND 0x2c #define REG_RSSI_WIDEBAND 0x2c
#define REG_DETECTION_OPTIMIZE 0x31 #define REG_DETECTION_OPTIMIZE 0x31
@ -77,7 +78,27 @@
#define EV_DIO0 (1 << 0) #define EV_DIO0 (1 << 0)
#define ERR_LOR_ID_MISMATCH (00) #define ERR_LOR_VERSION_MISMATCH (01)
#define LORA32_DEFAULT_CONFIG {\
.bandwidth = B250,\
.codingRate = 5,\
.frequency = 915000000,\
.spreadingFactor = 11,\
.preamble = DEFAULT_PREAMBLE,\
.implicitHeader = false,\
.useCRC = false,\
.fifoIdx = 0,\
.copi = -1,\
.cipo = -1,\
.clk = -1,\
.dio0 = -1,\
.dio1 = -1,\
.dio2 = -1,\
.nss = -1,\
.reset = -1,\
.spi_host = 1,\
}
enum freq { enum freq {
F433, F866, F915 F433, F866, F915
@ -102,23 +123,29 @@ typedef struct {
} lora32_handle_t; } lora32_handle_t;
typedef struct lora32_cfg_t { typedef struct lora32_cfg_t {
uint8_t nss;
uint8_t cipo;
uint8_t copi;
uint8_t clk;
uint8_t dio0;
uint8_t reset;
uint8_t fifoIdx; uint8_t fifoIdx;
uint8_t channel;
long frequency;
uint8_t bandwidth; uint8_t bandwidth;
uint8_t spreadingFactor; uint8_t spreadingFactor;
uint8_t codingRate; uint8_t codingRate;
int8_t nss;
int8_t cipo;
int8_t copi;
int8_t clk;
int8_t reset;
int8_t dio0;
int8_t dio1;
int8_t dio2;
int8_t channels[64];
long frequency;
uint16_t preamble; uint16_t preamble;
bool useCRC; bool useCRC;
bool implicitHeader; bool implicitHeader;
bool enableFHSS;
receiveCallback receive; receiveCallback receive;
txdoneCallback tx_done; txdoneCallback tx_done;
@ -134,16 +161,24 @@ typedef struct lora32_cfg_t {
uint8_t lora32_spi_init(lora32_cfg_t *config); uint8_t lora32_spi_init(lora32_cfg_t *config);
uint8_t lora32_init(lora32_cfg_t *config); uint8_t lora32_init(lora32_cfg_t *config);
uint8_t lora32_data_available(lora32_cfg_t *lora); uint8_t lora32_data_available(lora32_cfg_t *lora);
int16_t lora32_get_packet_rssi(lora32_cfg_t *lora);
int16_t lora32_get_rssi(lora32_cfg_t *lora);
double lora32_calc_datarate(lora32_cfg_t *lora); double lora32_calc_datarate(lora32_cfg_t *lora);
void lora32_dump_regs(lora32_cfg_t *lora); void lora32_dump_regs(lora32_cfg_t *lora);
void lora32_enable_fhss(lora32_cfg_t *lora, uint8_t period);
void lora32_enable_continuous_rx(lora32_cfg_t *lora); void lora32_enable_continuous_rx(lora32_cfg_t *lora);
void lora32_enable_single_rx(lora32_cfg_t *lora);
void lora32_enable_cad(lora32_cfg_t *lora); void lora32_enable_cad(lora32_cfg_t *lora);
void lora32_disable_fhss(lora32_cfg_t *lora);
void lora32_toggle_reset(lora32_cfg_t *lora); void lora32_toggle_reset(lora32_cfg_t *lora);
void lora32_send(lora32_cfg_t *config, uint8_t *data, uint8_t len); void lora32_send(lora32_cfg_t *config, uint8_t *data, uint8_t len);
void lora32_set_bandwidth(lora32_cfg_t *lora, uint8_t bw); void lora32_set_bandwidth(lora32_cfg_t *lora, uint8_t bw);
void lora32_set_coding_rate(lora32_cfg_t *lora, uint8_t cr); void lora32_set_coding_rate(lora32_cfg_t *lora, uint8_t cr);
void lora32_set_spreadfactor(lora32_cfg_t *lora, uint8_t factor); void lora32_set_spreadfactor(lora32_cfg_t *lora, uint8_t factor);
uint8_t lora32_get_spreadfactor(lora32_cfg_t *lora);
void lora32_read_data(lora32_cfg_t *lora, uint8_t *data); void lora32_read_data(lora32_cfg_t *lora, uint8_t *data);
void lora32_sleep(lora32_cfg_t *lora);
void lora32_standby(lora32_cfg_t *lora);
#endif // _LORA32_H__ #endif // _LORA32_H__

View file

@ -31,7 +31,7 @@ static TaskHandle_t dio_task_handle;
static SemaphoreHandle_t spi_semaphore; static SemaphoreHandle_t spi_semaphore;
uint8_t lora32_read_reg(lora32_cfg_t *lora, uint8_t address) { uint8_t lora32_read_reg(lora32_cfg_t *lora, uint8_t address) {
//xSemaphoreTake(spi_semaphore, portMAX_DELAY); xSemaphoreTake(spi_semaphore, portMAX_DELAY);
spi_transaction_t t; spi_transaction_t t;
memset(&t, 0, sizeof(spi_transaction_t)); memset(&t, 0, sizeof(spi_transaction_t));
@ -45,13 +45,13 @@ uint8_t lora32_read_reg(lora32_cfg_t *lora, uint8_t address) {
ESP_LOGV(TAG, "<%2X<%2X", address, t.rx_data[1]); ESP_LOGV(TAG, "<%2X<%2X", address, t.rx_data[1]);
//xSemaphoreGive(spi_semaphore); xSemaphoreGive(spi_semaphore);
return t.rx_data[1]; return t.rx_data[1];
} }
void lora32_write_reg(lora32_cfg_t *lora, uint8_t address, uint8_t value) { void lora32_write_reg(lora32_cfg_t *lora, uint8_t address, uint8_t value) {
//xSemaphoreTake(spi_semaphore, portMAX_DELAY); xSemaphoreTake(spi_semaphore, portMAX_DELAY);
spi_device_handle_t spi = lora->spi; spi_device_handle_t spi = lora->spi;
@ -67,44 +67,60 @@ void lora32_write_reg(lora32_cfg_t *lora, uint8_t address, uint8_t value) {
ESP_ERROR_CHECK(spi_device_transmit(spi, &t)); ESP_ERROR_CHECK(spi_device_transmit(spi, &t));
//xSemaphoreGive(spi_semaphore); xSemaphoreGive(spi_semaphore);
}; };
double lora32_calc_datarate(lora32_cfg_t *lora) { double lora32_calc_datarate(lora32_cfg_t *lora) {
double cr = (4.0 / (long)lora->codingRate); double cr = (4.0 / (long)lora->codingRate);
double sf = pow(2, lora->spreadingFactor); double sf = pow(2, lora->spreadingFactor);
double c2 = sf / bandwidths[lora->bandwidth]; double c2 = sf / bandwidths[lora->bandwidth];
ESP_LOGI(TAG, "codingRate: %d cr: %f sf: %f c2: %f", lora->codingRate, cr, sf, c2); ESP_LOGD(TAG, "codingRate: %d cr: %f sf: %f c2: %f", lora->codingRate, cr, sf, c2);
return lora->spreadingFactor * cr / c2 * 1000; return lora->spreadingFactor * cr / c2 * 1000;
} }
void lora23_set_explicit_header(lora32_cfg_t *lora) { void lora23_set_explicit_header(lora32_cfg_t *lora) {
ESP_LOGD(TAG, "setting explicit header");
lora->implicitHeader = false; lora->implicitHeader = false;
lora32_write_reg(lora, REG_MODEM_CONFIG_1, lora32_read_reg(lora, REG_MODEM_CONFIG_1) & 0xFE); lora32_write_reg(lora, REG_MODEM_CONFIG_1, lora32_read_reg(lora, REG_MODEM_CONFIG_1) & 0xFE);
} }
void lora23_set_implicit_header(lora32_cfg_t *lora) { void lora23_set_implicit_header(lora32_cfg_t *lora) {
ESP_LOGD(TAG, "setting implicit header");
lora->implicitHeader = true; lora->implicitHeader = true;
lora32_write_reg(lora, REG_MODEM_CONFIG_1, lora32_read_reg(lora, REG_MODEM_CONFIG_1) | 0x01); lora32_write_reg(lora, REG_MODEM_CONFIG_1, lora32_read_reg(lora, REG_MODEM_CONFIG_1) | 0x01);
} }
void lora32_idle(lora32_cfg_t *lora) { void lora32_standby(lora32_cfg_t *lora) {
ESP_LOGD(TAG, "MODE_STANDBY"); ESP_LOGV(TAG, "MODE_STANDBY");
lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_STANDBY); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_STANDBY);
} }
void lora32_sleep(lora32_cfg_t *lora) { void lora32_sleep(lora32_cfg_t *lora) {
ESP_LOGD(TAG, "MODE_SLEEP"); ESP_LOGV(TAG, "MODE_SLEEP");
lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_SLEEP); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_SLEEP);
} }
void lora32_enable_fhss(lora32_cfg_t *lora, uint8_t period) {
lora->enableFHSS = true;
lora32_write_reg(lora, REG_HOP_PERIOD, period);
}
void lora32_disable_fhss(lora32_cfg_t *lora) {
lora->enableFHSS = false;
lora32_write_reg(lora, REG_HOP_PERIOD, 0);
}
void lora32_enable_tx(lora32_cfg_t *lora) { void lora32_enable_tx(lora32_cfg_t *lora) {
lora32_idle(lora); lora32_standby(lora);
if(lora->implicitHeader) if(lora->implicitHeader)
lora23_set_implicit_header(lora); lora23_set_implicit_header(lora);
@ -117,7 +133,7 @@ void lora32_enable_tx(lora32_cfg_t *lora) {
} }
void lora32_send(lora32_cfg_t *lora, uint8_t *data, uint8_t len) { void lora32_send(lora32_cfg_t *lora, uint8_t *data, uint8_t len) {
spi_device_acquire_bus(lora->spi, portMAX_DELAY); ESP_ERROR_CHECK(spi_device_acquire_bus(lora->spi, portMAX_DELAY));
lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_TXDONE); lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_TXDONE);
@ -135,12 +151,12 @@ void lora32_send(lora32_cfg_t *lora, uint8_t *data, uint8_t len) {
} }
void lora32_set_frequency(lora32_cfg_t *lora, long frequency) { void lora32_set_frequency(lora32_cfg_t *lora, long frequency) {
ESP_LOGI(TAG, "lora32_set_frequency: %lu", frequency); ESP_LOGD(TAG, "lora32_set_frequency: %lu", frequency);
uint64_t frf = ((uint64_t)frequency << 19) / 32000000; uint64_t frf = ((uint64_t)frequency << 19) / 32000000;
ESP_LOGI(TAG, "REG_FRF_MSB: 0x%2X", (uint8_t)(frf >> 16)); ESP_LOGD(TAG, "REG_FRF_MSB: 0x%2X", (uint8_t)(frf >> 16));
ESP_LOGI(TAG, "REG_FRF_MID: 0x%2X", (uint8_t)(frf >> 8)); ESP_LOGD(TAG, "REG_FRF_MID: 0x%2X", (uint8_t)(frf >> 8));
ESP_LOGI(TAG, "REG_FRF_LSB: 0x%2X", (uint8_t)(frf >> 0)); ESP_LOGD(TAG, "REG_FRF_LSB: 0x%2X", (uint8_t)(frf >> 0));
lora32_write_reg(lora, REG_FRF_MSB, (uint8_t)(frf >> 16)); lora32_write_reg(lora, REG_FRF_MSB, (uint8_t)(frf >> 16));
lora32_write_reg(lora, REG_FRF_MID, (uint8_t)(frf >> 8)); lora32_write_reg(lora, REG_FRF_MID, (uint8_t)(frf >> 8));
@ -178,7 +194,7 @@ void lora32_set_tx_power(lora32_cfg_t *lora, uint8_t level, uint8_t output) {
lora32_write_reg(lora, REG_PA_CONFIG, PA_BOOST | (level - 2)); lora32_write_reg(lora, REG_PA_CONFIG, PA_BOOST | (level - 2));
} }
ESP_LOGI(TAG, "set_tx_power(%d, %d)", level, output); ESP_LOGD(TAG, "set_tx_power(%d, %d)", level, output);
ESP_LOGD(TAG, "REG_PA_CONFIG: 0x%2X", lora32_read_reg(lora, REG_PA_CONFIG)); ESP_LOGD(TAG, "REG_PA_CONFIG: 0x%2X", lora32_read_reg(lora, REG_PA_CONFIG));
} }
@ -215,7 +231,7 @@ void lora32_dump_regs(lora32_cfg_t *lora) {
void lora32_toggle_reset(lora32_cfg_t *config) { void lora32_toggle_reset(lora32_cfg_t *config) {
// toggle reset (L/H) // toggle reset (L/H)
ESP_LOGI(TAG, "Toggling reset pin %d", config->reset); ESP_LOGD(TAG, "Toggling reset pin %d", config->reset);
gpio_set_level(config->reset, 0); gpio_set_level(config->reset, 0);
vTaskDelay(100 / portTICK_PERIOD_MS); // requires 100us vTaskDelay(100 / portTICK_PERIOD_MS); // requires 100us
@ -224,7 +240,7 @@ void lora32_toggle_reset(lora32_cfg_t *config) {
vTaskDelay(100 / portTICK_PERIOD_MS); // 5ms before available vTaskDelay(100 / portTICK_PERIOD_MS); // 5ms before available
} }
uint8_t lora32_get_spreadingfactor(lora32_cfg_t *lora) { uint8_t lora32_get_spreadfactor(lora32_cfg_t *lora) {
return (lora32_read_reg(lora, REG_MODEM_CONFIG_2) >> 4); return (lora32_read_reg(lora, REG_MODEM_CONFIG_2) >> 4);
} }
@ -241,9 +257,23 @@ void lora32_set_spreadfactor(lora32_cfg_t *lora, uint8_t factor) {
lora32_write_reg(lora, REG_DETECTION_THRESHOLD, DETECT_THRES_OTHER); lora32_write_reg(lora, REG_DETECTION_THRESHOLD, DETECT_THRES_OTHER);
} }
ESP_LOGI(TAG, "lora32_set_spreadfactor: %d", factor); ESP_LOGV(TAG, "lora32_set_spreadfactor: %d", factor);
lora32_write_reg(lora, REG_MODEM_CONFIG_2, (lora32_read_reg(lora, REG_MODEM_CONFIG_2) & 0x0F) | ((factor << 4) & 0xF0)); lora32_write_reg(lora, REG_MODEM_CONFIG_2, (lora32_read_reg(lora, REG_MODEM_CONFIG_2) & 0x0F) | ((factor << 4) & 0xF0));
lora->spreadingFactor = factor;
}
void lora32_enable_single_rx(lora32_cfg_t *lora) {
ESP_LOGD(TAG, "MODE_RX_SINGLE");
if(lora->receive != NULL) {
lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_RXDONE);
}
lora32_standby(lora);
lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_SINGLE);
} }
void lora32_enable_continuous_rx(lora32_cfg_t *lora) { void lora32_enable_continuous_rx(lora32_cfg_t *lora) {
@ -253,6 +283,8 @@ void lora32_enable_continuous_rx(lora32_cfg_t *lora) {
lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_RXDONE); lora32_write_reg(lora, REG_DIO_MAPPING_1, DIO0_MODE_RXDONE);
} }
lora32_standby(lora);
lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_CONTINUOUS); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_CONTINUOUS);
} }
@ -268,34 +300,44 @@ void lora32_enable_cad(lora32_cfg_t *lora) {
lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_CAD_DETECT); lora32_write_reg(lora, REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_CAD_DETECT);
} }
int16_t lora32_get_rssi(lora32_cfg_t *lora) {
// TODO support LF output constant of -164
return -157 + lora32_read_reg(lora, REG_RSSI_VALUE);
}
int16_t lora32_get_packet_rssi(lora32_cfg_t *lora) {
// TODO support LF output constant of -164
return -157 + lora32_read_reg(lora, REG_PKT_RSSI_VALUE);
}
long lora32_get_bandwidth(lora32_cfg_t *lora) { long lora32_get_bandwidth(lora32_cfg_t *lora) {
uint8_t bw = (lora32_read_reg(lora, REG_MODEM_CONFIG_1) >> 4); uint8_t bw = (lora32_read_reg(lora, REG_MODEM_CONFIG_1) >> 4);
ESP_LOGI(TAG, "lora32_get_bandwidth: %d", bw); ESP_LOGV(TAG, "lora32_get_bandwidth: %d", bw);
if(bw > 9) return -1; if(bw > 9) return -1;
ESP_LOGI(TAG, "lora32_get_bandwidth: %ld", bandwidths[bw]); ESP_LOGD(TAG, "lora32_get_bandwidth: %ld", bandwidths[bw]);
return bandwidths[bw]; return bandwidths[bw];
} }
void lora32_set_ldo_flag(lora32_cfg_t *lora) { void lora32_set_ldo_flag(lora32_cfg_t *lora) {
long symbolDuration = 1000 / (lora32_get_bandwidth(lora) / (1L << lora32_get_spreadingfactor(lora))); long symbolDuration = 1000 / (lora32_get_bandwidth(lora) / (1L << lora32_get_spreadfactor(lora)));
ESP_LOGI(TAG, "symbolDuration: %ld", symbolDuration); ESP_LOGD(TAG, "symbolDuration: %ld", symbolDuration);
bool ldoOn = symbolDuration > 16; bool ldoOn = symbolDuration > 16;
ESP_LOGI(TAG, "ldoOn: %d", ldoOn); ESP_LOGD(TAG, "ldoOn: %d", ldoOn);
uint8_t modem_config_3 = lora32_read_reg(lora, REG_MODEM_CONFIG_3); uint8_t modem_config_3 = lora32_read_reg(lora, REG_MODEM_CONFIG_3);
ESP_LOGI(TAG, "modem_config_3: %d", modem_config_3); ESP_LOGD(TAG, "modem_config_3: %d", modem_config_3);
modem_config_3 |= ldoOn << 3; modem_config_3 |= ldoOn << 3;
ESP_LOGI(TAG, "modem_config_3: %d", modem_config_3); ESP_LOGD(TAG, "modem_config_3: %d", modem_config_3);
lora32_write_reg(lora, REG_MODEM_CONFIG_3, modem_config_3); lora32_write_reg(lora, REG_MODEM_CONFIG_3, modem_config_3);
} }
void lora32_set_bandwidth(lora32_cfg_t *lora, uint8_t bw) { void lora32_set_bandwidth(lora32_cfg_t *lora, uint8_t bw) {
ESP_LOGI(TAG, "lora32_set_bandwidth: %d", bw); ESP_LOGD(TAG, "lora32_set_bandwidth: %d", bw);
uint8_t modem_config_1 = lora32_read_reg(lora, REG_MODEM_CONFIG_1); uint8_t modem_config_1 = lora32_read_reg(lora, REG_MODEM_CONFIG_1);
lora32_write_reg(lora, REG_MODEM_CONFIG_1, (modem_config_1 & 0x0F) | (bw << 4)); lora32_write_reg(lora, REG_MODEM_CONFIG_1, (modem_config_1 & 0x0F) | (bw << 4));
@ -309,7 +351,7 @@ void lora32_set_coding_rate(lora32_cfg_t *lora, uint8_t cr) {
cr = cr - 4; cr = cr - 4;
ESP_LOGI(TAG, "lora32_set_coding_rate: %d", cr + 4); ESP_LOGD(TAG, "lora32_set_coding_rate: %d", cr + 4);
lora32_write_reg(lora, REG_MODEM_CONFIG_1, (lora32_read_reg(lora, REG_MODEM_CONFIG_1) & 0xF1) | (cr << 1)); lora32_write_reg(lora, REG_MODEM_CONFIG_1, (lora32_read_reg(lora, REG_MODEM_CONFIG_1) & 0xF1) | (cr << 1));
} }
@ -323,7 +365,7 @@ void lora32_set_lna(lora32_cfg_t *lora, uint8_t gain) {
uint8_t lna = lora32_read_reg(lora, REG_LNA); uint8_t lna = lora32_read_reg(lora, REG_LNA);
lora32_write_reg(lora, REG_LNA, lna | gain); lora32_write_reg(lora, REG_LNA, lna | gain);
ESP_LOGI(TAG, "set lna: 0x%2X", lna | gain); ESP_LOGD(TAG, "set lna: 0x%2X", lna | gain);
} }
static void lora32_handle_receive(lora32_cfg_t *lora) { static void lora32_handle_receive(lora32_cfg_t *lora) {
@ -342,11 +384,11 @@ static void lora32_handle_receive(lora32_cfg_t *lora) {
static void IRAM_ATTR lora32_dio_task(void *arg) { static void IRAM_ATTR lora32_dio_task(void *arg) {
// allocate lora32_cfg_t to receive config from Queu // allocate lora32_cfg_t to receive config from Queu
lora32_cfg_t *lora = malloc(sizeof(lora32_cfg_t)); lora32_cfg_t *lora = malloc(sizeof(lora32_cfg_t));
ESP_LOGI(TAG, "starting DIO handler task"); ESP_LOGD(TAG, "starting DIO handler task");
while(1) { while(1) {
// wait for event over Queue // wait for event over Queue
if(xQueueReceive(dio_event_queue, (void*)lora, portMAX_DELAY) != pdPASS) continue; if(xQueueReceive(dio_event_queue, (void*)&lora, portMAX_DELAY) != pdPASS) continue;
// need a better way to log which event and from which config // need a better way to log which event and from which config
//ESP_LOGI(TAG, "handling DIO0 on GPIO%d", lora->dio0); //ESP_LOGI(TAG, "handling DIO0 on GPIO%d", lora->dio0);
@ -361,6 +403,8 @@ static void IRAM_ATTR lora32_dio_task(void *arg) {
ESP_LOGD(TAG, "clearing irqs"); ESP_LOGD(TAG, "clearing irqs");
lora32_write_reg(lora, REG_IRQ_FLAGS, irqs); lora32_write_reg(lora, REG_IRQ_FLAGS, irqs);
spi_device_release_bus(lora->spi);
// TODO handle header validation // TODO handle header validation
if((irqs & IRQ_RX_DONE) == IRQ_RX_DONE) { if((irqs & IRQ_RX_DONE) == IRQ_RX_DONE) {
lora32_handle_receive(lora); lora32_handle_receive(lora);
@ -386,7 +430,20 @@ static void IRAM_ATTR lora32_dio_task(void *arg) {
if(lora->cad_done != NULL) lora->cad_done(lora, cad_detected); if(lora->cad_done != NULL) lora->cad_done(lora, cad_detected);
} }
spi_device_release_bus(lora->spi); if((irqs & IRQ_FHSS_CHANGE) == IRQ_FHSS_CHANGE) {
ESP_LOGD(TAG, "switching channel %d: %d", lora->channel, lora->channels[lora->channel]);
if(lora->channel == 0 && lora->channels[lora->channel] == 0) continue;
if(lora->channels[lora->channel] == 0) {
ESP_LOGD(TAG, "reseting to channel 0");
lora->channel = 0;
}
lora32_set_frequency(lora, lora->frequency + (lora->channels[lora->channel] * bandwidths[lora->bandwidth]));
lora->channel++;
}
} }
} }
@ -394,19 +451,19 @@ void lora32_read_data(lora32_cfg_t *lora, uint8_t *data) {
uint8_t i = 0; uint8_t i = 0;
uint8_t len = lora32_read_reg(lora, (lora->implicitHeader ? REG_PAYLOAD_LENGTH : REG_RX_NB_BYTES)); uint8_t len = lora32_read_reg(lora, (lora->implicitHeader ? REG_PAYLOAD_LENGTH : REG_RX_NB_BYTES));
ESP_LOGI(TAG, "Reading %d bytes", len); ESP_LOGD(TAG, "Reading %d bytes", len);
for(i = 0; i < len; i++) { for(i = 0; i < len; i++) {
data[i] = lora32_read_reg(lora, REG_FIFO); data[i] = lora32_read_reg(lora, REG_FIFO);
} }
} }
static void IRAM_ATTR lora32_on_dio0(void *arg) { static void IRAM_ATTR lora32_on_dio(void *arg) {
xQueueSend(dio_event_queue, arg, (TickType_t)0); xQueueSendFromISR(dio_event_queue, (void*)&arg, pdFALSE);
} }
uint8_t lora32_spi_init(lora32_cfg_t *lora) { uint8_t lora32_spi_init(lora32_cfg_t *lora) {
ESP_LOGI(TAG, "Initializing SPI bus"); ESP_LOGD(TAG, "Initializing SPI bus");
esp_err_t err = ESP_OK; esp_err_t err = ESP_OK;
@ -442,7 +499,7 @@ uint8_t lora32_init(lora32_cfg_t *lora) {
lora32_toggle_reset(lora); lora32_toggle_reset(lora);
// set NSS high // set NSS high
ESP_LOGI(TAG, "Bringing NSS high: %d", lora->nss); ESP_LOGD(TAG, "Bringing NSS high: %d", lora->nss);
gpio_set_level(lora->nss, 1); gpio_set_level(lora->nss, 1);
vTaskDelay(10 / portTICK_PERIOD_MS); vTaskDelay(10 / portTICK_PERIOD_MS);
@ -463,11 +520,19 @@ uint8_t lora32_init(lora32_cfg_t *lora) {
uint8_t version = lora32_read_reg(lora, REG_VERSION); uint8_t version = lora32_read_reg(lora, REG_VERSION);
ESP_LOGD(TAG, "lora32_get_id() == 0x%2X", version); ESP_LOGD(TAG, "lora32_get_id() == 0x%2X", version);
assert(version == 0x12);
lora->version = version;
// if ID does not match, something is likely wrong on the SPI bus
if(version != 0x12) {
ESP_LOGE(TAG, "REG_VERSION returned incorrectly. Expected 0x12 got 0x%02X", version);
return ERR_LOR_VERSION_MISMATCH;
}
// TODO: confirm this is happening. Before/after power measurements? // TODO: confirm this is happening. Before/after power measurements?
lora32_sleep(lora); lora32_sleep(lora);
ESP_LOGI(TAG, "lora32_sleep"); ESP_LOGV(TAG, "lora32_sleep");
// TODO: VERIFY // TODO: VERIFY
lora32_set_frequency(lora, lora->frequency); lora32_set_frequency(lora, lora->frequency);
@ -477,7 +542,7 @@ uint8_t lora32_init(lora32_cfg_t *lora) {
lora32_write_reg(lora, REG_FIFO_TX_BASE_ADDR, 0x00); lora32_write_reg(lora, REG_FIFO_TX_BASE_ADDR, 0x00);
lora32_write_reg(lora, REG_FIFO_RX_BASE_ADDR, 0x00); lora32_write_reg(lora, REG_FIFO_RX_BASE_ADDR, 0x00);
ESP_LOGI(TAG, "clear rx/tx fifos"); ESP_LOGV(TAG, "clear rx/tx fifos");
lora32_set_lna(lora, 0x03); lora32_set_lna(lora, 0x03);
@ -486,41 +551,61 @@ uint8_t lora32_init(lora32_cfg_t *lora) {
// TODO make based on config // TODO make based on config
lora32_set_tx_power(lora, 17, PA_OUTPUT_PA_BOOST_PIN); lora32_set_tx_power(lora, 17, PA_OUTPUT_PA_BOOST_PIN);
ESP_LOGI(TAG, "lora32_set_tx_power"); ESP_LOGV(TAG, "lora32_set_tx_power");
lora32_idle(lora); lora32_standby(lora);
ESP_LOGI(TAG, "lora32_idle"); ESP_LOGV(TAG, "lora32_standby");
if(lora->implicitHeader)
lora23_set_implicit_header(lora);
else
lora23_set_explicit_header(lora);
// TODO setup shouldn't be based on just receive callback // TODO setup shouldn't be based on just receive callback
if(lora->receive != NULL) { if(lora->receive != NULL) {
ESP_LOGI(TAG, "Setting GPIO Interrupt"); ESP_LOGV(TAG, "Setting GPIO Interrupt");
// TODO check at least one DIOx pin is not NULL
uint64_t pin_bit_mask = 0;
if(lora->dio0 > -1)
pin_bit_mask |= (1 << lora->dio0);
if(lora->dio1 > -1)
pin_bit_mask |= (1 << lora->dio1);
if(lora->dio2 > -1)
pin_bit_mask |= (1 << lora->dio2);
io_conf.intr_type = GPIO_PIN_INTR_POSEDGE; io_conf.intr_type = GPIO_PIN_INTR_POSEDGE;
io_conf.pin_bit_mask = (1ULL << lora->dio0); io_conf.pin_bit_mask = pin_bit_mask;
io_conf.mode = GPIO_MODE_INPUT; io_conf.mode = GPIO_MODE_INPUT;
io_conf.pull_down_en = 0; io_conf.pull_down_en = 1;
io_conf.pull_up_en = 0; io_conf.pull_up_en = 0;
gpio_config(&io_conf); gpio_config(&io_conf);
gpio_set_intr_type(lora->dio0, GPIO_INTR_POSEDGE);
// the DIO interrupt handling for every device is done from one task // the DIO interrupt handling for every device is done from one task
if(dio_task_handle == NULL) { if(dio_task_handle == NULL) {
ESP_LOGI(TAG, "Setting callback handler and ISR service"); ESP_LOGV(TAG, "Setting callback handler and ISR service");
// enable global ISR service // enable global ISR service
gpio_install_isr_service(0); gpio_install_isr_service(0);
dio_event_queue = xQueueCreate(10, sizeof(lora32_cfg_t)); dio_event_queue = xQueueCreate(10, sizeof(lora32_cfg_t *));
// this should probably be high priority // this should probably be high priority
xTaskCreate(&lora32_dio_task, "lora32_dio_task", 4096, NULL, 6, &dio_task_handle); xTaskCreate(&lora32_dio_task, "lora32_dio_task", 4096, NULL, 6, &dio_task_handle);
} }
// add ISR handler to the global service started (once) above // add ISR handler to the global service started (once) above
ESP_LOGI(TAG, "Installing ISR handler for GPIO%d", lora->dio0); ESP_LOGV(TAG, "Installing ISR handler for GPIO%d", lora->dio0);
gpio_isr_handler_add(lora->dio0, lora32_on_dio0, lora); if(lora->dio0 > -1)
gpio_isr_handler_add(lora->dio0, lora32_on_dio, (void*)lora);
if(lora->dio1 > -1)
gpio_isr_handler_add(lora->dio1, lora32_on_dio, (void*)lora);
if(lora->dio2 > -1)
gpio_isr_handler_add(lora->dio2, lora32_on_dio, (void*)lora);
} }
return 1; return ESP_OK;
}; };